
V T L – 2

A Very Tiny Language

V T L – 2 for the Altair 680

A VERY TINY LANGUAGE
For the Altair 680B and 8800

Refereces to 8800 version removed from this edition.
(Later versions in C and other machines)

Copyright 1976, 1977, Gary Shannon & Frank McCoy
Copyright 2007, 2008, Frank McCoy

INTRODUCTION:

VTL-2 is the second Very Tiny Language developed for the Altair 680 Computer
system. VTL-2 represents an enormous improvement over the earlier VTL-1 language, and
incorporates some thirty additional features. In spite of these enhancements, it still requires
only 768 bytes of Read-Only-Memory, and still fits into the three empty PROM sockets
already on the 680 CPU board.

The statements that may be entered as input to the VTL-2 interpreter are of two types:

1. Direct statements, which have no line number, and are executed immediately after
they are entered.

2. Program statements, which are used to build a program, and are not executed until
the program is run. Program statements must have line-numbers identifying their
location in the program.

VTL-2 is simple enough for the beginner to use easily, and yet powerful enough to

serve the needs of the most advanced users. The subscripted memory reference commands,
and full input-output format control, make VTL-2 a versatile language suitable for solving a
wide range of computer problems.

Page 2 of 36

PRELIMINARY CONCEPTS:

Line-numbers must precede each program statement, and must be separated from that

statement by a single blank space. These numbers must be in the range of 1-65535. Line-
number zero is not permitted. Each line ends with a carriage-return and must be less than 73
characters long.

It is recommended that lines be numbered in steps of ten (10, 20, 30, etc.) so that new

statements may be inserted if necessary.

Variables may be represented by any single alphabetic (capitals only) or special

character (punctuation mark). !"#$%&&'()=-+*:;?/>.<,[] Most of these are
available for the user to define as he wishes. A few of the variable names however, have been
reserved for special purposes. These so-called "system variables" will be discussed in detail
later.

The value assigned to a variable may be either a numeric value in the range of 0-65535,

or a single ASCII character (including control-characters). Numeric and string values may be
freely interchanged, in which case, the characters are equivalent to the decimal value of their
ASCII code representation. Thus, it becomes possible to add 1 to the letter "A", giving as a
result, the letter "B".

The arithmetic operations permitted for use in expressions are:

 + (addition)
 - (subtraction)
 * (multiplication)
 / (division)
 = (test for equality)
 > (test for greater than or equal to)
 < (test for less than)

The test operations, equal to, greater than, or equal to, and less than, all return a value

of zero if the test fails, and a value of one if the test is successful.

Expressions in VTL-2 may contain any number of variables or numeric values (literal

constants) connected by any of the above operation symbols. Parentheses may be used to alter
the order of execution of the operations. If no parentheses are included, the operations
proceed in strictly left to right order.

The value resulting from the expression must be assigned to some variable name. This

is done with the equal sign. Note that the symbol has two meanings, depending on where it
occurs in the expression. The expression: A=B=C means test B and C for equality; if they are
equal, put a one in A; if they are unequal, put a zero in A.

Page 3 of 36

Some examples of valid arithmetic expressions would be:

Y=A*(X*X)+B*X+C With left to right execution, this is equivalent to:

Y=(A*X*X+B)*X+C
Y=(A*X*X)+(B*X)+C Which is equivalent to: Y=AX^2+BX+C

Notice how the absence of parentheses around the quantity B*X in the first expression

has completely altered its meaning. Keep the left to right order in mind, and when in doubt,
use parentheses to control the order of evaluation.

SYSTEM VARIABLES:

In order to conserve space, and to provide a more consistent syntax, VTL-2 uses

"system variables" to accomplish functions usually done with special key words in other
languages. This convention is probably the single most important reason for its tiny size.

The system variable "number" or "pound sign" ‘#’ represents the line number of the

line being executed. Until the statement has been completed, it will contain the current line
number; so that the statement:

100 A=#

is equivalent to simply writing:

100 A=100

After completion of a line, this variable will contain the number of the next line to be
executed. If nothing is done to the variable, this will be the next sequential line in the program
text. If a statement changes #, however, the next line executed will be the line with the
number that matches the value of #. Thus the variable # may be used to transfer control of
execution to a different part of the program.

This is the VTL-2 equivalent of the BASIC "GOTO" statement. For example:

#=300 means "GOTO 300"

If the # variable should ever be set to zero by some statement, this value will be

ignored, and the program will proceed as if no change had taken place. This allows us to write
IF statements in VTL-2. Consider the following example:

10 X=1 Set X equal to 1
20 #=(X=25)*50 If X is equal to 25 then goto 50
30 X=X+1 Add 1 to X

Page 4 of 36

40 #=20 Goto 20
50 Continue

Notice that the quantity (X=25) will have the value one, if it is true that X is equal to
25, and the value zero if it is false. When this logical value is multiplied times 50, the result
will be either zero, or 50. If it is 50, the statement causes a "GOTO 50" to occur. If the value
is zero, a "GOTO 0" which is a dummy operation, causes the next statement down (number
30) to be executed.

Taking advantage of left to right evaluation, two bytes of memory could be saved by

writing:

20 #=X=25*50

Each and every time the value of # is changed by a program statement, the old-value+1

is saved in the system variable "exclamation point" ‘!’. In other words, after executing a
GOTO, the line number of the line that follows the GOTO is saved so that a subroutine will
know which program statement called it; and will know where to return when finished. Thus
the # variable is used for both GOTO and GOSUB operations. For example:

10 X=1
20 #=100
30 X=2
40 #=100
50 X=3
60 #=100
....
100 X=X*X
110 #=! (GOTO back where you came from)

In this example, control proceeds from line 20 to line 100. After that, line 110 causes

control to return to line 30. When line 40 is executed, the subroutine at 100 will return to line
50.

The actual value stored in the ! variable is (old-line-number+1) But, VTL-2, if it does

not find the exact line number it is searching for, will take the next higher existing line
number. Therefore, if a program statement says "#=52" and there are lines numbered 50 and
60 with nothing in between, control passes to the next higher line number, which is line 60.

The system variable "question mark" ‘?’ represents the user's terminal. It can be either

an input, or an output, depending on which side of the equal sign it appears.

Page 5 of 36

The statement "?=A" is interpreted as "PRINT A", and the statement "X=?" is
interpreted as "INPUT X". Note that the "?" may be included anywhere in the expression.
For example, the program:

10 ?="ENTER THREE VALUES"
20 A=(?+?+?)/3
30 ?="THE AVERAGE IS ";
40 ?=A

will request three inputs while executing line 20.

When typing in a reply to a request for input, the user may enter any one of three

different types of data:

1. A decimal number
2. A variable name
3. Any valid VTL-2 expression

Thus, for example, the user may reply with such things as "1004" or "A+B*(9/X)".

In each case, the expression is completely evaluated before the result is passed to the input
statement. The only exception is that you are not allowed to respond with another question
mark; as this will mess up the line pointer in the interpreter, causing it to return an improper
value.

If a carriage-return, with no value, is typed in response to a request for input, the

interpreter will return some undefined value. Therefore, this is not recommended.

When the question-mark is on the left side of the first equal sign, it represents a PRINT

statement. When this occurs, either of two different things may be on the right side of the
equal sign:

1. Any valid VTL-2 expression (as defined above)
2. A string of characters enclosed in quote marks ("")

When the expression is a numeric one, the value is computed, and printed as a left-

adjusted, unsigned, decimal integer, with no leading or trailing blanks. A carriage return
never follows the printing of a decimal value.

Page 6 of 36

When the expression is a quoted character string, the actual string of characters is
printed, with no leading or trailing blanks. A carriage-return line-feed sequence will follow
the printing of a string unless a semicolon follows the closing quote.

This omission of leading and trailing blanks allows complete control of formatting

printed output. For example, the program:

10 ?=50/2
20 ?=",";
30 ?=265+3
40 ?=".";
50 ?=16

will print the line: "25,268.16" with no spaces between the pieces. This feature is most often
used in floating point, and multiple precision subroutines. (See "FACTORIALS" in the
sample program section.)

If at any time it is desired to have a carriage-return line-feed printed, the statement: ?

="" will accomplish this.

The system variable "per-cent" ‘%’ contains the value of the remainder of the last

divide operation. This value will remain the same until the next divide operation.

The system variable "apostrophe" ‘'‘ represents a random number. This number will

have an unpredictable value in the range of 0-65535. If called twice in the same line, the same
value will be returned both times. The value of the variable is scrambled each time any
statement is executed. Therefore, for best results it is highly recommended that at least one
other computation be performed before the value is again called for. This may even be a
simple dummy statement such as: Z=Z+7 For an example of this, see "DON'T LOSE YOUR
AT" in the sample programs section.

In addition to decimal numeric input and output, the system variable "dollar sign" ‘$’ is
used to input and output single characters. As with the question mark variable, "A=$" means
"input a single ASCII character and place its numeric value in A". Similarly, "$=X" means
"print the single ASCII character whose value is stored in X". For example, the program:

Page 7 of 36

10 A=65
20 $=A
30 A=A+1
40 #=A<91*20
50 ?=""

will print out, as one continuous string, all the letters of the alphabet:
ABCDEFGHIJKLMNOPQRSTUVWXYZ. If you wish to find out what decimal values
correspond to which characters, these can be found in your terminal operations manual, or
simply computed by typing the direct statement ?=$ and then entering the character whose
decimal value is to be found.

The system variable "asterisk" ‘*’ represents the memory size of your computer. For a

1k system this would be 1024. For a 32k system this would be 32*1024 or 32768. In the 680
version, this contains random data; so you should initialize it to your actual available memory
on your machine.

If the user wishes to allot space for user defined machine-language-subroutines, then the

variable * is set equal to the bottom of the first byte required by the user defined routine.

On compiled C versions of VTL-1 and VTL-3, the variable is preset on entry. Setting
no memory available “*=0” exits the program to DOS.

The system-variable “ampersand” ‘&’ represents the next available byte of memory in
the program buffer. When first calling VTL-2, or when it is desired to erase the present
program, this must be initialized to the program start or the value 264 for the 680B version..
Most other versions of VTL-2, particularly the compiled ‘C’ versions, come initialized with
the program empty (&=0);

&=264 Altair 680B initialization
&=0 Compiled ‘C’ versions (automatic)

At any given time the user may find out how much of his memory still remains unused
by typing “?=*-&”. This will cause the system to respond with the number of bytes
remaining. A minimum of at least three bytes are needed for any line of VTL-2. The line-
numbers are saved in binary and require two bytes regardless of their decimal values. The
lines “1 X=Y” and “65000 X=Y” both take up an identical 7 bytes of memory; and are
examples of the normal minimum valid VTL-2 line.

Any memory past the end of a program may be used for array storage. This array
storage may be used for saving numeric or string values. The array does not have a name,
since there is only one, but it can be divided up into several pieces by the programmer and
used for different groups of data (If the programmer has enough spare memory for the
purpose). See the program “CIPHER” in the sample programs section. A subscript

Page 8 of 36

expression is identified by a colon ‘:’ and a right-parentheses. The colon marks the beginning
of the expression; and the right-parentheses marks the end. Thus, for example, “:1)=0”
places a zero in the first two bytes past the end of the program; and “:2+7)=A” places the
value of the A variable into the 9th two-byte word past the end of the program.

Subscripts should not be allowed to be less than one (1) as this will point the subscript
into the program and could cause it to be wiped out as a result. (Special programs such as the
RENUMBER program make use of this feature.)

Subscript expression may be any valid VTL-2 numeric expressions. This example
should clarify the use of subscript expressions.

10 I=1 Set pointer
20 :I)=$ Input a character to the next word
30 #=:I)=13*60 GOTO 60 if it’s a carriage-return char.
40 I=I+1 Point to next array word
50 #=20 Go get another character
60 ?=”” Print a carriage-return/line-feed
70 I=1 Reset pointer
80 $=:I) print Ith character
90 #=:i)=13*120 If carriage-return, then GOTO 120
100 I=I+1 point to next character
110 #=80 Go get next character
120 ?=”” Print carriage-return/line-feed

The above example will read in any string of characters typed by the user, such as a
sentence or paragraph, until a carriage-return is typed. It will then echo back the complete
string as it was typed in.

For further examples, study the game programs which use character input and those that
have arrays representing the playing board. These will be found in the Sample Program
section.

Since subscripts are two-byte words, and since values as large as 65535 are allowed as
subscripts, it is possible that large values in the subscript expression may “wrap around” the
end of memory and reach locations within the program text itself. Therefore, there is a danger
that a VTL-2 program using computed subscripts may “clobber” itself. On the other hand,
this also means that a VTL-2 program may modify itself (as in the RENUMBER program)
although this practice is not recommended.

The system-variable “greater-than” ‘>‘ is used to pass a value to a machine-language
program. When encountered on the left side of the equal sign, the expression is evaluated, the
value placed as a 16-bit integer into two registers, and control passed to the user routine. In
the 6800 version, a software-interrupt (SWI) is generated, with the values passed in the A and

Page 9 of 36

B registers. Make sure you have provided handler routines. The returned-value in the same
two registers is placed in the system-variable >.

On the compiled ‘C’ versions of VTL-2 (and VTL-3) the “>” symbol is used for output
to a file. The syntax is:

>=”filename”

The > variable contains the status of whether the write was successful or not.

Similarly, on the same systems, the “<” symbol is used for input from a file. Again the
syntax is:

<=:”filename”

The < variable contains the status of whether the read was successful or not.

Output or input continues in each case until a Control-C character is encountered. This
can either be from the console or found in the input or output. Make sure programs that
output using this function include the end-character.

There is no “END” statement in VTL-2. The interpreter simply continues sequentially
through the program until it runs out of lines to execute or until a statement is encountered
which will try to transfer control to a line that is greater in number than any in the program.

Besides the tightly assembled versions of VTL-2 for the 8080 and 6800, there have
been other versions made for the 68000 and other processors including DATA-100 terminals.
Since I didn’t write the 68000 variations, I can’t tell you where to find them; only that they
exist.

I have since compiled (rather huge actually) two variations of VTL to run under DOS
(and that run in a DOS window under Windows). VTL2.COM and VLT-3.COM. The VTL-3
version just being a 32-bit version of VTL-2. Both are free, just for the asking. All I want
there is credit for making the programs. VTL2.COM is straight-up VTL-2, with the addition
of file-handling. You can enter the command from DOS:

VTL2 HURKLE.VTL

which will find the program HURKLE.VTL load it, and run it.

Write me at:

“Frank McCoy” <mccoyf@millcomm.com>

for more information; or about anything to do with VTL-2

Page 10 of 36

OPERATIONAL CHARACTERISTICS

Altair 680B version:

Switch the machine to STOP. While stopped, toggle the RESET switch. Switch to
“RUN”. The monitor prompt should be typed on the terminal.

Type in:
J FC00

Once VTL-2 is in control, the message “OK” will be printed. The next step is to set
your memory-size. This is done by directly entering:

*=1024 for a 1K memory system (Basic 680B)
*=1024*33 for a 33K system (32K expansion + 1K)
Etc.

This is unneeded on the compiled versions. They already come with maximum memory
set.

Next, set the end-of-program pointer. This is done by typing:

&=264 for a 6800 system

Again, no initialization is needed for a compiled system. &=0 being the default with no
program in place.

VTL-2 is now ready to begin accepting programs and commands. If at any time it is
desired to erase the program in memory, repeat the last step above. This will re-initialize the
VTL-2 program space.

When a program line is entered, it will be inserted into its proper space in the program
text. If the line just entered has the same line-number as a line already in the text, the old line
will be replaced by the new line. If the line-number only is typed, followed immediately by a
carriage-return, that line will be deleted.

While typing in program lines, VTL-2 should single-space and make no replies to lines
entered. If, after typing a line, VTL-2 double-spaces down and prints, “OK”, that indicates
that there was not enough memory available to insert the new line just typed.

The user may check to see how much memory remains for program entry at any time by
typing the direct statement:

?=*-&

Page 11 of 36

The system will then respond with the number of bytes still available for program entry.

While typing in a line, the back-arrow key (Shift-0 on some terminals, Underline on
others) will cause the last character typed to be deleted from the input-buffer. The character
will still appear on the screen, terminal, or printout; but will no longer be in memory. Thus
the line: “A=B*C__+N” goes in as “A=B+N”, where the “*C” was deleted by the two back-
arrow (or underline) characters. This precludes the use of the underscore character as a
variable. On the compiled ‘C’ versions, the backspace-character also works.

At any time before hitting Return, the entire line may be erased by typing the At-sign
character ‘@’ (Shift-P or “Cancel” on some terminals.)

Typing the single character zero ‘0’ followed by a carriage-return causes VTL-2 to
print out a complete listing of the program.

While printing is taking place, whether as a program listing or as output from a
program, the operation can be cancelled and control returned to the operator by pressing
Control-C. When this is done, VTL-2 completes its current print statement, and then prints
“OK” to acknowledge the interruption.

In addition to this, any other key (preferably a non-printing control-character such as
Control-A) may be pressed. This will cause VTL-2 to temporarily suspend operation and wait
for another key to be pressed. (Again, preferably another non-printing character.)

This feature allows users with video terminals to list their programs a section at a time;
hitting Control-A to stop the listing; and hitting it again to resume listing.

Note that these characters also affect printing being done by a program. You may
temporarily halt your program with a Control-A, and start it up again with another Control-A.
These keys only work during printing which uses the question-mark ‘?’ system-variable.
String printing with the dollar-sign ‘$’ variable will NOT interrupt in this manner. This
allows the user the option of making his program interruptible or non-interruptible.

Should an uninterruptible program become “locked up” in a loop, the only way out is
with the front-panel reset, as described above when starting. You can then jump to VTl-2 in
the same manner you did when starting; just don’t re-initialize the program-pointer, and your
program should still be in memory for you to edit or run again.

To run a program once entered, the user simply types the direct command:

#=1

This causes VTL-2 to find the lowest numbered line and start executing there. If it is desired
to begin execution at some other line, say line 1000, simply type:

Page 12 of 36

#=1000

or whatever line is desired to start at.

Comments may be inserted on any line by preceding them with a right-parentheses ‘)’
character. This symbol must follow the expression on the line immediately, with no blanks in
between. This causes VTL-2 to stop evaluating the line and go on to the next line. If a line is
to contain only a comment, then the first character on the line should be a right-parentheses.
Examples of commented lines:

100 A=2) Initialize variable
110) Just a comment alone.

There are no error-messages in VTL-2. If an expression is wrong, the results of
evaluating that expression will also be wrong. ALL expressions, even if improperly formed,
WILL be evaluated! In other words: VTL-2 assumes that you know what you are doing; and
will do its best to execute any statement that you give it. This leaves WIDE latitude for trying
various program “tricks”; but also leaves the complete responsibility for verifying program
accuracy with the programmer. Thus you will have ample opportunity to “shoot yourself in
the foot” if not careful.

For those who would like to experiment with VTL-2 on a DOS based machine, I have
copies of VTL2.COM and VTL3.COM that I distribute freely. VTL-3 being a 32-bit version
of VTL-2,

Simply send me an email at:

“Frank McCoy” <mccoyf@millcomm.com>

asking for a copy, and I’ll send you one. The only limit I place on the usage is recognition of
authorship.

I also appreciate hearing of any interesting VTL2 programs other people have created.
Listings *much* appreciated!

(Note from Grant, I would also appreciate hearing about VTL-2 programs! Send me an e-mail
at grant@stockly.com or share your program on the http://www.stockly.com forums.)

Page 13 of 36

Sample of Programming
(680B version)

When starting: A. Lift the Run/Halt-switch.
B. Turn the computer on.
C. Lift the Reset-switch
D. Turn the Run/Halt-switch to Run
E. The monitor should reply with a period (.)
F. Type in J FC00
G. VTL-2 should reply with “OK”

OK VTL-2 prompt
*=1024 Set memory-size to 1024 bytes

OK VTL-2 prompt
&=264 Reset program pointer

OK VTL-2 prompt
10 A=0 Set A equal to zero
20 B=1 Set B equal to one
30 ?=A Print the factorial number
40 “=”! = “; Print “Factorial equals”
50 ?=B Print the value of the factorial
60 ?=”” Print a carriage-return/line-feed
70 A=A+1 Increment factorial number
80 B=B*A Calculate next by multiplication
90 #=A<9*30 If less than !9 then GOTO step 30
#=10 Execute program
0! = 1 (Program Output)
1! = 1
2! = 2
3! = 6
4! = 24
5! = 120
6! = 720
8! = 40320

OK VTL-2 prompt saying it’s done.

Page 14 of 36

List of new features of VTL-2
Compared to VTL-1

#1 11 more variables
#2 1 array
#3 Computed return-address
#4 End-of-program pointer
#5 End-of-memory pointer
#6 Random number generator
#7 Single character string input
#8 Single character string output
#9 Machine-language subroutines
#10 Computed line inputs
#11 Computed array
#12 Faster operation
#13 Input/output compatibility on LIST
#14 Faster line insertion
#15 No double carriage-return on line inputs
#16 “OK” prompt
#17 No prompt on line-insertion
#18 Nulls and control-characters equal or less than carriage-return are not inserted into lines
#19 Control-C stops execution when printing
#20 Any key pressed suspend operation when printing

Any key pressed resumes operation when printing
#21 All interrupt vectors are preserved
#22 On initialization, setting the line-number equal to zero is no longer needed
#23 Multiple operations are allowed on a value on a line
#24 Single and multiple parentheses are allowed
#25 Print statements may be with or without a following carriage-return/line-feed
#26 No leading or trailing spaces are added to a printed number
#27 # stands for present line number, not present line-number plus one
#28 More understandable system variables. EI: # stands for line-number
#29 33 more bytes are allotted for program space
#30 Programs takes up 10% less space in memory
#31 Up to 72 characters are allowed per line

Page 15 of 36

List of Features

Variables:

Variable: Meaning

A-Z Common Variables
Use freely for storing values

System Variables:

! Return-Address
Points to line# after the last #= statement

“ Pointer for literal print statements
Current line-number
$ Single-character input or output
% Remainder after last divide operation
& Points to last byte of program
’ Random number
(Sets start of parenthesized expression
) End:

Sets end of line
Sets end of parenthesized expression
Sets end of array description
Used also for REMARK statements

* Points to end of memory
> Machine-language subroutine (680 or 8800)

Output to disk-file (Compiled C versions)
< Input from disk-file (Compiled C versions)
? Print statement when left of equal-sign

Input statement when right of equal-sign
: Defines start of array description
; When following a literal print-statement,

says do not print carriage-return/line-feed

.-=;+,/^[] May be used as standard variables;
But use not recommended for legibility reasons

Page 16 of 36

Operators:

+ Add to previous value
- Subtract from previous value
* Multiply times previous value
/ Divide previous value by
= Is previous value equal to (Yes = 1, No = 0)
< Is previous value less than (Yes = 1, No = 0)
> Is previous value equal-to or greater than

(Yes = 1, No = 0)
The default operator is the less-than test, if symbol for operator is unrecognized.

Page 17 of 36

Control-Code Cross-Reference
For some common video terminals

All numeric values in decimal
X and Y are decimal values

Usage Info-Term SWTP-TVT VT-100/ANSI.SYS

-

Home-Up 18 19 <Esc>[H

Erase-Screen 28 22 <Esc>[J

Goto X,Y <Esc>[X;Y]H

Form-Feed 12 12 12
(Next page on TVT.)

Carriage-Return 13 13 13

Back-Space 8 8 8

Line-Feed 10 10 10

Back-Cursor 19 18 <Esc>[D

Up-Cursor 21 <Esc>[A

Down-Cursor 10 10 <Esc>[B

These codes can usually be translated one-for-one, from one program to another. For example, where
you see:

100 $=22 For the SWTP TVT, You’d enter:

100 $=27 For a VT-100 or computer running ANSI.SYS
101 ?=”[J”;

The remainder of this manual contains sample programs. You do
not need to retype all of these programs, they can be downloaded
from the forums at http://www.stockly.com. Programs may be
“pasted” into the Altair 680 using a serial terminal program like
HyperTerm or TeraTerm. See the forums for more information!

Page 18 of 36

HURKLE

100 ?=""
110 ?="A HURKLE IS HIDING ON A"
120 ?="10 BY 10 GRID. HOMEBASE"
130 ?="ON THE GRID IS POINT 00"
140 ?="AND A GRIDPOINT IS ANY"
150 ?="PAIR OF WHOLE NUMBERS"
160 ?="TRY TO GUESS THE HURKLE'S"
170 ?="GRIDPOINT. YOU GET 5 GUESSES"
180 ?=""
190 R='/100*0+%
200 A=R/10
210 B=%
220 K=1
230 ?="GUESS #";
240 ?=K
250 ?=" ?";
260 X=?/10
270 Y=%
280 ?=""
290 #=X*10+Y=R*540
300 K=K+1
310 #=K=6*440
320 ?="GO ";
330 #=Y=B*370+(Y<B*360)
340 ?="SOUTH";
350 #=370
360 ?="NORTH";
370 #=X=A*410+(X<A*400)
380 ?="WEST";
390 #=410
400 ?="EAST";
410 ?=""
420 ?=""
430 #=230
440 ?=""
450 ?="SORRY THAT'S 5 GUESSES"
460 ?="THE HURKLE IS AT ";
470 ?=A
480 ?=B
490 ?=""
500 ?=""
510 ?="LETS PLAY AGAIN."
520 ?="HURKLE IS HIDING"
530 #=180
540 ?="YOU FOUND HIM IN ";
550 ?=K
560 ?=" GUESSES"
570 #=490

Page 19 of 36

TIME OF DAY DIGITAL CLOCK

FOR 300 BUAD TERMINALS: FOR 110 BAUD TERMINALS:

10 ?="HOUR ?"; 10 ?="HOUR ?";
20 H=? 20 H=?
30 ?="MINUTE ?"; 30 ?="MINUTE ?";
40 M=? 40 M=?
50 ?="SECOND ?"; 50 ?="SECOND ?";
60 S=? 60 S=?
70 ?="READY" 70 ?="READY"
80 A=$ 80 A=$
90 S=S+1 90 S=S+1
100 M=S/60+M 100 M=S/60+M
110 S=% 110 S=%
120 H=M/60+H 120 H=M/60+H
130 M=% 130 M=%
140 H=H/24*0+% 140 H=H/24*0+%
150 ?="TIME: "; 150 ?=H/10
160 ?=H/10 160 ?=%
170 ?=% 170 ?=":";
180 ?=":"; 180 ?=M/10
190 ?=M/10 190 ?=%
200 ?=% 200 ?=":";
210 ?=":"; 210 ?=S/10
220 ?=S/10 220 ?=%
230 ?=% 230 $=13
240 $=13 240 A=B
250 A=B 250 A=B
260 T=31 260 A=B
270 T=T-1 270 A=B+B
280 #=T=0*90 280 T=14
290 #=270 290 T=T-1

300 #=T=0*90
310 #=290

Page 20 of 36

FACTORIALS

CALCULATES FACTORIALS UNTIL IT RUNS OUT OF MEMORY
FOR IK OF MEMORY THIS IS ABOUT 208!

10 A=1
20 L=2
30 :1)=1
40 I=2
50 :I)=0
60 I=I+1
70 #=L>I*50
80 ?=""
90 ?=""
100 ?=A
110 ?="! ="
120 ?=""
130 I=L+1
140 I=I-1
150 #=:I)=0*140
160 ?=:I)
170 I=I-1
180 #=I=0*220
190 ?=:I)/10
200 ?=%
210 #=170
220 A=A+1
230 I=1
240 C=0
250 X=:I)
260 :I)=A*X
270 #=:I)<X*320
280 :I)=:I)+C
290 C=:I)/100
300 :I)=%
310 I=I+1
320 #=L>I*250
330 #=C=0*80
340 L=L+1
350 #=*-&/2<L*380
360 :I)=C
370 #=290

Page 21 of 36

WEEKDAY

10 #=440 470 :4)=6
20 ?="DAY OF THE WEEK" 480 :5)=1
30 ?="" 490 :6)=4
40 ?="MONTH? "; 500 :7)=6
50 M=? 510 :8)=2
60 #=M>13*40 520 :9)=5
70 #=M=0*40 530 :10)=0
80 ?=DAY OF MONTH? "; 540 :11)=3
90 D=? 550 :12)=5
100 ?="YEAR? " 560 #=20
110 Y=?
120 #=Y>1800*230
130 #=Y<100*150
140 #=70
150 ?=""
160 ?="IS THAT 19";
170 ?=Y
180 ?="? ";
190 K=$
200 #=K=89=0*70
210 ?="ES"
220 Y=Y+1900
230 C=Y/100
240 Y=%
250 #=Y/4*0+%=0*280
260 :1)=6
270 :2)=2
280 W=Y/4+Y+D+:M)+(2*(C=18))/7*0+%
290 #=300+(20*W)
300 ?="SUN";
310 #=430
320 ?="MON";
330 #=430
340 ?="TUES";
350 #=430
360 ?="WEDNES";
370 #=340
380 ?="THURS";
390 #=430
400 ?="FRI";
410 #=430
420 ?="SATUR";
430 ?="DAY"
440 :1)=0
450 :2)=3
460 :3)=3

Page 22 of 36

STARSHOOTER

10 I=0 290 #=:I)=95=0*250
20 I=I+1 300 I=I-1
30 :I)=46 310 #=260
40 #=I<41*20 320 A=:43)-64
50 :25)=42 330 ?=""
60 I=8 340 #=A>6*230
70 J=1 350 B=:44)-48
80 $=I-1/7+64 360 #=B>6*230
90 ?=" - "; 370 S=A*7+1+B
100 S=I+J 380 ?=""
110 $=:S) 390 #=:S)=42*420
120 J=J+1 400 ?="THAT'S NOT A STAR!"
130 #=J=6*160 410 #=230
140 ?=" "; 420 :S)=46
150 #=100 430 C=S-7
160 I=I+7 440 #=520
170 ?="" 450 C=S-1
180 ?="" 460 #=520
190 #=I<43*70 470 C=S+1
200 ?="" 480 #=520
210 ?=" 1 2 3 4 5" 490 C=S+7
220 ?="" 500 #=520
230 ?="YOUR MOVE --"; 510 #=60
240 I=42 520 ^=!
250 I=I+1 530 #=:C)=42*560
260 :I)=$ 540 :C)=42
270 #=:I)=13*320 550 #=^
280 #=:I)=3*580 560 :C)=46

570 #=^

Object of the game is to change this: To this:

A - A - * * * * *

B - B - * . . . *

C - . . * . . C - * . . . *

D - D - * . . . *

E - E - * * * * *

 1 2 3 4 5 1 2 3 4 5

Page 23 of 36

MEMORY TEST
10 A=0 410 L=L+1
20 ?="MEMORY SIZE? "; 420 #=L<8*360
30 B=? 430 ?="BIT IN ERROR IS #";
40 A=A+257 440 ?=L
50 C=A 450 ?=""
60 I=0
70 I=I+1
80 :I)=C
90 C=C+769
95 ?="";
100 #=I*2+&<B*70
110 C=A
120 I=0
130 I=I+1
140 D=:I)
145 #=D=C=0*170
150 C=C+769
155 ?="";
160 #=130
170 E=C/256
180 F=%
190 G=D/256
200 H=%
210 J=E=G
220 P=I*2+&+J
230 #=P<B*300
240 ?="TEST # ";
250 ?=A/256
260 ?=" COMPLETE"
270 #=A<65535*40
280 ?="DONE"
290 #=999
300 ?="ERROR AT BYTE #";
305 ?=P
310 ?=""
320 #=J*342
330 F=E
340 H=G
342 ?=" TEST BYTE WAS ";
344 ?=F
345 ?=""
346 ?="ERROR BYTE WAS ";
348 ?=H
349 ?=""
350 L=0
360 F=F/2
370 M=%
380 H=H/2
390 N=%
400 #=M=N=0*430

Page 24 of 36

FACTORS
Calculates factors of a number

10 ?="NUMBER? ";
20 N=?
30 X=N
40 $=27
45 ?="[2J";
50 ?=N
60 ?=" IS ";
70 #=N/2*0+%=0*140
80 D=3
90 Q=N/D
100 #=%=0*160
110 #=D>Q*300
120 D=D+2
130 #=90
140 ?="EVEN."
150 #=10
160 ?=""
170 ?=D
180 N=Q
190 Q=N/D
200 #=%=0*220
210 #=120
220 ?="^";
230 P=1
240 N=Q
250 Q=N/D
260 P=P+1
270 #=%=0*240
280 ?=P
290 #=120
300 #=N=1*340
310 #=N=X*390
320 ?=""
330 ?=N
340 ?=""
350 ?="DONE"
370 ?=""
380 #=10
390 ?="PRIME."
400 ?=""
410 #=340

Page 25 of 36

DON'T LOSE YOUR AT!
BY

Ed Verner
Adapted to VTL-2 BY Gary Shannon

(A game similar to "BAGLES")

The object of the game is to guess the secret number picked by the computer. The number has three digits, no
zeroes, and no digit is repeated. After you type in your guess, the computer will print an “IT” for every
correct digit in the wrong position, and an “AT” for every correct digit in the right position. You win when
you get three “AT”s. Each time that you guess incorrectly, you lose 5% of the points you have left

10 T=0 310 #=C=X*S
20 L=0 320 #=C=Y*S
30 ?="DON'T LOSE YOUR 'AT'" 330 K=0
40 X='/9*0+%+1 340 S=620
50 Y='/9*0+%+1 350 #=A=X*S
60 #=X=Y*40 360 #=B=Y*S
70 Z='/9*0+%+1 370 #=C=Z*S
80 #=X=Z*40 380 #=K<3*580
90 #=Y=Z*40 390 ?=""
100 ?="I'VE GOT A NUMBER." 400 ?="YOU WIN ";
105 L=L+1 410 ?=P/100
110 P=10000 420 ?=".";
120 ?="" 430 ?=%/10
130 ?="YOU HAVE "; 440 ?=%
140 ?=P/100 450 ?=" POINTS FOR A TOTAL OF ";
150 ?="."; 460 T=T+P
160 ?=%/10 490 ?=T/100
170 ?=% 500 ?=".";
180 ?=" POINTS LEFT" 510 ?=%/10
190 ?="" 520 ?=%
200 ?="WHAT'S YOUR GUESS? -- "; 540 ?=" POINTS IN ";
210 G=? 550 ?=L
220 A=G/100 560 ?=" GAMES."
230 B=%/10 570 #=30
240 C=% 580 P=P/20*19
260 S=600 590 #=120
270 #=A=Y*S 600 ?="IT ";
280 #=A=Z*S 610 #=!
290 #=B=X*S 620 ?="AT ";
300 #=B=Z*S 630 K=K+1

640 #=!

****************************** HAVE FUN! ***************************

Page 26 of 36

CRAPS!

10 T=100 310 A=$
20 $=22 320 #=500
30 ?="CRAPS!" 330 #=R=7*390
40 ?="" 340 #=R=P*360
50 ?="HOW MUCH DO YOU BET? - "; 350 #=300
60 B=? 360 ?="YOU WIN"
70 #=B=0*90 370 T=T+B
80 ?="GOOD LUCK!" 380 #=120
90 #=B=0*480 390 T=T-B
100 #=T>B*160 400 ?="YOU LOSE"
110 ?="TOO MUCH!" 410 #=T=0*430
120 ?="YOU HAVE $"; 420 #=120
130 ?=T 430 ?="YOU ARE BUSTED!"
140 ?=" LEFT." 440 ?="MOVE OVER AND LET THE NEXT"
150 #=40 450 ?="SUCKER TRY."
160 ?="" 460 ?=""
170 ?="ROLL-"; 470 #=10
180 A=? 480 ?="BE SERIOUS"
190 $=22 490 #=40
200 ?="FIRST ROLL: "; 500 R='/6*0+%+1
210 #=500 510 ?=R
220 #=R=7*360 520 X=X+11213
230 #=R=11*360 530 ?=" AND ";
240 #=R<4*390 540 S='/6*0+%+1
250 #=R=12*390 550 X=X*56001
260 ?="" 560 ?=S
270 ?=R 570 ?=" (";
280 ?=" IS YOUR POINT" 580 R=R+S
290 P=R 590 ?=R
300 ?="ROLL-"; 600 ?=")"

610 #=!

Page 27 of 36

CIPHER GAME

10 I=0 260 :I)=:T)
20 I=I+1 270 I=I+1
30 :I)=I+64 280 #=:I)>14*240
40 #=I<26*20 290 ?=""
50 I=1 300 ?="CODE:"
60 ?="" 310 ?=""
70 M='/26*0+%+1 320 I=27
80 H=:M) 330 $=:I)
90 :M)=:I) 340 #=:I)=13*370
100 :I)=H 350 I=I+1
110 I=I+1 360 #=330
120 #=I<27*70 370 ?=""
130 ?="TEXT?" 380 ?="SWITCH? - ";
140 ?="" 390 A=$
150 I=27 400 B=$
160 :I)=$ 410 #=B=64*370
170 #=:I)=13*220 420 I=27
180 #=:I)=95=0*200 430 #=:I)=A*490
190 I=I-2 440 #=:I)=B=0*460
200 I=I+1 450 :I)=A
210 #=160 460 I=I+1
220 ?="" 470 #=:I)=13*290
230 I=27 480 #=430
240 #=:I)<64*270 490 :I)=B
250 T=:I)-64 500 #=460

Page 28 of 36

PHRASE SORT

10 $=22
20 I=0
30 I=I+1
40 :I)=$
50 L=:I)=95*2
60 I=I-L
70 #=:I)>14*30
80 ?=""
90 I=1
100 K=I
110 J=K
120 #=:K)=32*160
130 #=:J)=32*150
140 #=:K)>:J)*160
150 J=K
160 K=K+1
170 #=:K)>14*120
180 H=:I)
190 :I)=:J)
200 :J)=H
210 I=I+1
220 #=:I)>14*100
230 I=0
240 I=I+1
250 $=:I)
260 #=:I)>14*240
270 ?=""

Page 29 of 36

LUNAR LANDER
10 $=26 494 W=L
20 ?=" LUNAR LANDER" 495 L=X/L+L/2
30)BY SU-MING WU 496 #=L<W*494
40)MAR-VISTA CA. 497 L=L/2
50)MAY 1977 500 #=L<2*470
55)CORRECTED BY FRANK MCCOY 510 ?="YOU HIT THE GROUND WITH A VELOCITY OF ";
56)JUNE 6 1977 520 ?=L
60 ?="" 530 ?=" FEET PER SECOND"
90 F=120 540 #=L>10*580
110 V=50 550 #=L>5*562
120 D=500 555 ?="A VERY GOOD LANDING"
130 ?="FUEL SPEED DISTANCE BURN" 560 #=600
140 T=F 562 #=L>8*570
141 #=410 563 ?="A FAIR LANDING, BUT YOU DAMAGED"
142 ?=F 564 ?="PART OF YOUR LANDING GEAR"
150 ?=" "; 565 #=600
151 T=V<10000*V+(V>10000*(0-V))
152 #=410
153 $=T=V*32+(T<V*45)
154 ?=T
160 T=D
161 ?=" "; 570 ?="A POOR LANDING---YOU'LL PROBABLY BE STRANDED HERE"
162 #=410 575 ?="FOR THE REST OF YOUR SHORT LIFE"
163 ?=D 576 #=600
170 ?=" ? "; 580 ?="NO SURVIVERS-----REST IN PEACE"
220 B=? 600 ?=""
230 B=B<F*B+(B>F*F) 610 ?=""
240 F=F-B 620 ?=""
250 #=B<5*280 630 ?=""
260 Z=B-5/2 640 ?="DO YOU WANT TO PLAY AGAIN? ";
270 #=290 650 A=$
280 Z=0-(0-B+5/2) 660 #=A=89*10
290 #=Z+D-V=0+(V-B+5=0)=2*470 670 #=A=78=0*630
291 #=Z+D-V-1>10000*490 680 ?="O";
293 D=Z+D-V
294 V=V-B+5
300 B=0
305 #=F=0*490
310 #=140
410 #=T>1000*!
420 ?=" ";
430 #=T>100*!
440 ?=" ";
450 #=T>10*!
460 ?=" ";
465 #=!
470 ?="PERFECT LANDING!"
480 #=600
490 L=V*V+(5-B*D*2)
491 #=L=0*499
493 X=L*4

Page 30 of 36

LIFE
FAST VERSION

10 #=370
20 S=Y<F*Y+(Y=0*E)+(Y=F)-1*O+(X<Q*X+(X=0*O)+(X=Q))
25 :S)=:S)+2
30 X=X+1-(J<X*3)+(J-1=X*(Y=I)) 490 #=J>I*470
40 Y=J-1=X+Y 495 #=631
50 #=I+1>Y*20 500 I=1
70 #=90 510 ?=""
80 #=:I-1*O+J)/2*0+%*20 520 J=1
90 J=J+1-(O=J*O) 530 #=I>10*550
100 I=J=1+I 540 ?=" ";
110 ?=""; 550 ?=I
120 X=J-1 560 ?=" ";
130 Y=I-1 570 L=$
140 #=I<F*80 580 :I-1*O+J)=L=32+(L=13)+(L=95)+(L=64)=0*6
150 I=1 590 J=J+1-(L=95*2)
160 J=1 600 #=L=13*620+(L=64*510)
180 ?="" 610 #=J<Q*570
190 P=0 620 I=I+1
200 K=I-1*O+J 625 #=I<F*510
210 :K)=:K)<5+(:K)>8)=0 626 #=631
220 P=P+:K) 627 #=150
230 $=:K)*10+32 631 $=22
240 J=J+1-(J=O*O) 632 $=18
250 #=1<J*200 633 $=32
260 ?="" 634 $=18
270 I=I+1 635 $=22
280 #=I<F*200 636 $=18
290 ?="GEN = "; 637 $=32
300 ?=G 638 $=18
310 G=G+1 640 #=!
320 ?=" POP = ";
330 ?=P
340 I=1
350 J=1
360 #=0<P*110+(P=0*650)
370 I=1
380 G=0
390 ?="SIZE? ";
400 O=?
410 Q=O+1
420 ?="BY? ";
430 E=?
440 F=E+1
450 J=O*E+2
460 #=J*2+&>**390
470 :I)=0
480 I=I+1

This program takes at least 2K to operate properly.
This version was written for the SWTP TVT; but will run on any normal terminal. For best results (on the TVT)
try for a 31 by 15 matrix.

Page 31 of 36

TIC-TAC-TOE
This version for Dec VT-100
Or compatibles (ANSI.SYS)

1000 Q=0
1010 H=0
1020 J=0
1030 I=0
1035 $=27
1037 ?="[J";
1040 U=0
1050 S=1
1054 ?=""
1056 ?=""
1060 I=I+1
1070 :I)=I+48
1080 #=I<9*1060
1090 #=1680
1100 $=27
1101 ?="[H";
1110 ?=""
1120 ?=" YOUR MOVE - ";
1130 U=1
1140 M=$-48
1150 #=3-48=M*2040
1160 ?=""
1170 #=M=0*1030
1180 #=9<M*1211
1190 #=:M)<65*1240
1191 $=27
1192 ?="[H";
1200 ?=" SOMEBODY ALREADY THERE"
1210 #=1120
1211 $=27
1212 ?="[H";
1220 ?=" ILLEGAL MOVE! "
1230 #=1120
1240 :M)=88
1250 #=1680
1260 X=1
1270 L=0
1280 K=0
1290 N=1
1300 A=N
1310 B=X+N
1320 C=2*X+N
1330 #=:A)=:B)+(:A)=:C))=2*1880
1340 #=:A)=:B)+(:C)<65)=2*1410
1350 D=A
1360 A=B
1370 B=C
1380 C=D
1390 #=A=N*1440
1400 #=1340
1410 #=K>1*(:L)=79)*1440
1420 L=A
1430 K=C
1440 #=X=4+(2*X+N=9+(X=2))*30+#

Page 32 of 36

1450 N=X=1*2+1+N
1460 #=1300
1470 X=X+1
1480 N=X=2*2+1
1490 #=1300
1500 #=K>1*1620
1510 I=0
1520 P=0
1530 I=I+1
1540 P=:I)>65+P
1550 #=I<9*1530
1560 #=P=9*1950
1570 K=M
1575 X=0
1580 K=:5)>65*(K+S/2*0+%+('/16384*2+1)+K/10*0+%/9*0+%+1)
1590 K=:5)<65*5+K
1600 X=X+1
1605 S=X>9+S
1610 #=:K)>65*1580
1620 :K)=79
1625 S=:5)=79*M+S/2*0+%
1630 #=L>1*(:L)=79)*1910
1640 !=1100
1650 $=27
1655 ?="[H";
1660 ?=" MY MOVE - ";
1670 ?=K
1675 ?=" "
1677 ?=""
1680 ?=""
1690 ?=""
1700 R=!
1710 I=7
1720 ?=" | |"
1725 ?=" ";
1730 ?=" ";
1740 #=U*1770
1750 $=:I)
1760 #=1780
1770 $=:I)<65*32+(:I)>65*:I))
1780 P=:I)>65+P
1790 I=I+1
1800 #=I/3*0+%=1*1830
1810 ?=" |";
1820 #=1730
1830 ?=""
1840 ?=" | |"
1850 #=I=4*R
1855 I=I-6
1860 ?=" -----+-----+-----"
1870 #=1720
1880 ?=" !!!YOU WIN!!!"
1890 H=H+1
1900 #=1970
1910 #=1650
1920 ?=" YOU LOSE."
1930 J=J+1
1940 #=1970
1950 ?=" CAT GOT THIS ONE."

Page 33 of 36

1960 Q=Q+1
1970 $=13
1975 ?=" PLAY AGAIN? ";
1977 $=8
1980 S=$
1990 #=S=89+(S=121)=0*2020
2000 #=S=89*2006
2002 ?="es"
2004 #=1030
2006 ?="ES"
2010 #=1030
2020 #=S=78+(S=110)=0*1970
2030 #=S=78*2036
2032 ?="o"
2034 #=2040
2036 ?="O"
2040 ?=""
2050 ?=" I WON ";
2060 ?=J
2070 ?=" GAME";
2072 #=J=1*2076
2074 ?="S";
2076 ?=""
2080 ?=" YOU WON ";
2090 ?=H
2100 ?=" GAME";
2102 #=H=1*2106
2104 ?="S";
2106 ?=""
2110 ?=" WE TIED ";
2120 ?=Q
2130 ?=" GAME";
2132 #=Q=1*2136
2134 ?="S";
2136 ?=""
2137 ?="HIT ANY KEY TO EXIT"
2138 Z=$
2140 *=0

Note-1: Those last 3 lines are *only* used on compiled programs to make it exit to DOS. You don’t need to
include them on terminal-based programs.

Note-2: This particular program requires SLIGHTLY *OVER* 2K of memory to run. It could be (and has
been in the past) trimmed down to just barely run with 2048 bytes on the 680B; but I no longer have a
copy of that version.

Using single-character home-up and clear-screen gets most of the needed space; but not quite enough.
Some serious editing would have to be done to save the needed space.

It’s included as an example for those with more memory or using the compiled version of VTL-2.

Page 34 of 36

RENUMBER

680B version 8800 version Compiled version

64000 A=#
64010 C=#
64020 B=&
64030 &=B
64040 ?="STARTING #? ";
64050 D=?
64060 ?="STEP SIZE? ";
64070 E=?
64080 &=1
64090 G=131 64090 G=159 64090 G=0-1
64100 J=0
64110 I=&
64120 H=#+1
64130 &=I
64140 G=&+1/2+G
64150 &=%
64160 #=:G)>A*15*(C-A)+#
64170 #=D-1>(A-1)+(J>D)>1*C
64180 :G)=D
64190 &=&+1
64200 J=D
64210 D=D+E
64220 I=&
64230 &=B
64240 K=#+1
64250 &=I+1
64260 X=:G)/256*0+%
64270 I=&
64280 &=B
64290 #=%>1*K
64300 #=H
64310 ?="DONE"
64320 ?="TO REMOVE RENUMBER FROM PROGRAM, TYPE: &=";
64330 ?=G*2+&
64340 ?=""
64350 &=B

Note-1: The only difference between the three variations is line number 64090; which is half the size of & minus-one, on
an empty program.

Note-2: The program itself is relocatable. I.e., it, itself can be renumbered and it will still run. However, the step-size
between program steps must remain constant in the source, or line 64160 will not work right. Also, the largest
number of the program to be renumbered must be less than the first number of the renumber program itself.
That’s why the numbers are large.

Note-3: This version of the renumbering program ONLY renumbers the basic line-numbers, not computed goto
statements. Therefore a renumbered program will have to be edited manually to make all the “gotos” match the
original source.

Note-4: To renumber a program, simply type-in or load RENUMBER.VTL on top of an existing program, type:
#=64000and let it run.

Page 35 of 36

(Blank – The End...)

Page 36 of 36

